Preface

This document has been prepared to assist CVA members with basic procedures to enjoy successfully flying the DH8 aircraft in FS2002 and 2004. There are 2 types of flight simulator pilots: those that like to jump in, engines running, file GPS direct and go; those that prefer to start cold-and-dark cockpit, research their flight planned route, plan a realistic fuel load and conduct a more immersive experience. This training document has various benefits for both types of flightsim pilots.

I am not a licensed pilot. I am an aviation enthusiast and flightsim addict since the early days of sublogic’s Flight Assignment: ATP. I am employed as an Air Traffic Controller in the Halifax Terminal specialty with NavCanada. I have had the opportunity to discuss various aspects of DH8 flying with pilots from Air Atlantic, Air Nova and Jazz and am constantly trying to improve my scope of knowledge.

Ken Greenwood
Chief Instructor, CVA822

The airframes we will be discussing in this document are, in my opinion, the 2 finest DH8 models available for FS2002 and FS2004.

Payware model & panel is the PSS DH8-300
http://www.phoenix-simulation.co.uk/
The freeware model is the Frolov DH8-300
http://fandafans.fseurope.net/D300.htm

They are both excellent models and each has its advantages/disadvantages. Remarkably they are quite similar in performance and capabilities and either should perform well for you. When a difference in procedures between the two is required for this reference it will be noted.

Other DeHavilland DH8 models available are the
Dreamwings -100 and -400. These aircraft will be evaluated when they are fully released. The -100 should perform quite similarly to the -300 but the Q400 has been referred to as more like a regional jet than a turboprop.

Please note that this is not a definitive flying document for the DH8. It is a CVA company procedures document – that has been developed using common sense, general knowledge, discussion with real world operators and to simulate the aircraft performance with the limitations of FS 2002/2004. If you have questions about procedures contained in this document feel free to contact the author of this document or another CVA member. The CVA forums are also an excellent source of information on DH8 ops and other flight sim related topics.

1. Aircraft

I believe it is safe to say that the DH8 series truly is the workhorse of Canadian regional aviation. Every day hundreds of DH8s, ranging from the -100 series to the -Q400 series, service airports and aerodromes from coast to coast. They are also widely used in the US, Europe, Asia and Australia.

Powerplants - Two 1775kW (2380shp) Pratt & Whitney Canada PW123A turboprops driving four blade Hamilton Standard propellers

Performance - Max cruising speed 532km/h (287kt). Initial rate of climb 1800ft/min. Service ceiling 25,000ft. Range with full passenger load and reserves 1538km (830nm), with 2720kg (6000lb) payload 1612km (870nm).

Weights - Operating empty 11,657kg (25,700lb), standard max takeoff 18,642kg (41,100lb).

Dimensions - Wing span 27.43m (90ft 0in), length 25.68m (84ft 3in), height 7.49m (24ft 7in). Wing area 56.2m² (605sq ft).

Capacity - Flightcrew of two. Standard single class seating for 50 passengers at four abreast and 81cm (32in) pitch

History - With the success of the Dash 8-100 series, a stretched version with greater capacity was a logical development.

De Havilland Canada (now part of Bombardier) launched full scale development of a 50 seat stretched version of its Dash 8 regional airliner during 1986, approximately two years after the standard fuselage length aircraft had entered service. The first series 300 aircraft was in fact the prototype Dash 8 converted to the new length, and it flew for the first time in its new configuration on May 15 1987. Flight testing culminated in the awarding of Canadian certification in February 1989, with the first delivery to Time Air following late that same month. US certification was awarded in June 1989.
2. Pre-Flight

Prior to commencing your CVA flightsim trip, you should have, at the very least, determined your departure point, flight planned route and destination. As mentioned earlier, flight sim enthusiasts vary in their immersion into the hobby – from flying exact real world flightplans coinciding with actual departure times, passenger loads, fuel and weather, to those that jump in and let ‘er go.

This instruction will provide you with a ‘middle ground’ theory that should provide you with a reasonable level of entertainment and challenge to your simulated flying. We will assume that you are flying a standard CVA company route, commencing with a ‘cold and dark’ flightdeck and will be flying online with Squawkbox and the VATSIM network.

Your pre-flight paperwork should include:
- the departure airport diagram
- the SID (standard instrument departure) (if applicable) filed or likely to be assigned
- your flightplanned route
- the STAR (standard terminal arrival) filed or likely to be assigned
- approach plates for the destination airport
- the destination airport diagram
- pencil/pen and paper to write ATC clearances/instructions as issued

Setting up your Flight Simulator:
- start your flight program, select the DH8 model, set the date/time, departure airport and choose a spot adjacent to the terminal building, BUT not an active runway.
- start weather generation software (if req’d)
- conduct a fuel/weight and balance check
- start the Squawkbox software (tutorials on installing and running SB are available at www.vatsim.net).
 DO NOT CONNECT TO THE NETWORK.
- open the flight plan window and fill in appropriate fields
 - DH8’s normally file in the 255-265 TAS range
 - DH8’s are restricted to FL250 and below – due to the lack of drop down oxygen capability in the passenger compartment.
 - IFR F/P CYHZ V310 CYSJ @ 12000 feet.
 - Alternate: CYFC
 - ETE 045m; FOB 2h30m
 - NOTES: REG/C-GCVX OPR/Canadian Virtual RMK/FS9.1
- squawk standby in SB
- connect to the VATSIM network, and immediately PING server and resend flightplan
- enter FMS waypoints for your route (Wilco)
- at major airports you may request your IFR clearance prior to engine start.

“Halifax Clearance – good afternoon CanadianXXX at Gate15, ready to start engines, we’d like to put our IFR clearance on request”
 - at smaller airports where no delay may be anticipated for departure, you may start engines and request taxi and IFR clearances simultaneously

“I am cleared to St. John’s via CYHZ3 departure, climb and maintain 5000’, expect FL120 minutes after departure. Departure Runway 06. Push and start pilot discretion, call Halifax Ground when ready for taxi”
 - It is important to copy the clearance as issued by ATC on your notepad to ensure a correct readback. Make note of any changes in the assigned clearance from the flightplan you submitted, and query ATC if unsure. Always have a pen or pencil ready.
 - set transponder to assigned code
 - set your altitude limiter for the SID altitude
 - adjust NAV waypoints for any changes to route or for SID departure

You should be now ready to commence pre-start checks. Captains will normally call for engine start after receiving their clearance from ATC. ATC will usually authorize pushback and start on receipt of a correct flight clearance readback. After a successful start and pushback, you will be required to contact ATC for taxi clearance to the departure runway.

3. Start and Taxi

For detailed information on the start procedure for the PSS or Frolov DH8, please refer to the operating guidelines in the documentation with the aircraft.
- conduct engine start IAW with appropriate flightsim model direction.
- you should have both your aircraft position light and red rotating beacon on when starting/idling
- ensure you have a clear warning panel before proceeding with your flight. The only warning light that should be illuminated post start is the parking brake indication. <Shift><5> to verify the warning panel on the Frolov and the PSS
- set your NAV and COMM radio frequencies as required for departure
- ensure your altimeter is set to station pressure
- contact online ATC (if available) and request taxi clearance

“Halifax Ground, good morning, CanadianXXX ready for taxi to runway 06 for departure”

“CanadianXXX, taxi to and hold short Rwy 06”
 - readback the taxi clearance
 - review assigned taxi clearance on airport diagram
4. Take off and Climb
Upon reaching the hold short line or once you are in position for the departure runway as directed by ATC:

"Halifax Tower, CanadianXXX, holding short Rwy 06"

♦ Air Conditioning bleeds and fans switches OFF
♦ select Auto Feather ON
♦ turn off taxi lights, turn on flare/approach lights
♦ select strobes & wing insp lights ON
♦ turn on weather radar ON (if fitted)
♦ mode C on Squawkbox and/or aircraft transponder
♦ set prop condition to MAX <CTRL><F4>
♦ set flaps to takeoff (5° for normal & 15° for short field)
♦ open throttle restrictor gate
♦ when ready – advance throttles to takeoff torque as per the chart
♦ do not exceed 92% torque
♦ monitor engine gauges closely during takeoff roll
♦ rotate smoothly at predetermined Vr speed from weight/balance calculations (See Chart: Take-off Speeds - Page 5)
♦ maintain an initial attitude of +8 -10 degrees once you have verified a positive rate of climb select gear up
♦ retract flaps at 120kias
♦ through 1000’ AGL reduce prop condition levers to 900rpm
♦ select Air Conditioning bleeds and fan switches ON
♦ select wing insp lights OFF
♦ through 1000’ AGL contact ATC as directed

"Halifax Departure, CanadianXXX with you through 1000’ for 5000’, runway heading"

"CanadianXXX, Halifax Departure, radar identified through 1200’, turn left heading 330, climb and maintain 8000”

♦ establish 160kias climb profile set torque to appropriate climb setting (See Chart: Max climb power torque setting, 900 rpm - Page 5)
♦ engage autopilot no earlier than 1000’ AGL
 • set ALT SEL mode (reset altitude when cleared by ATC)
 • set IAS (160) mode
 • set HDG or NAV mode as required to follow flightplanned route
♦ fly assigned SID profile
♦ through 10,000 ASL select flare/approach lights OFF
♦ through 10,000 ASL select passenger lights OFF
♦ through FL180 (if applicable) set altimeter to standard pressure 29.92 inches
♦ once clear of the terminal area, Dep will hand you off to "Halifax Centre, CanadianXXX is level 12,000”

♦ reaching flightplanned altitude smoothly level off and set torque to appropriate cruise setting

5. Enroute
♦ monitor aircraft systems to ensure ops normal
♦ monitor fuel consumption
♦ monitor weather at destination and alternate aerodromes
♦ plan approach procedure based on prevailing winds at the destination, standard procedures for destination airport and/or consultation with ATC
♦ note any variations deviations in STAR info
♦ provide enroute ICING/TURBULENCE PIREPS to ATC as required
monitor TCAS closely, especially in uncontrolled airspace
monitor SB online ATC and verify whether you enter controlled airspace while enroute

Max cruise rating: 900 rpm

<table>
<thead>
<tr>
<th>Weight (lbs)</th>
<th>30000</th>
<th>33000</th>
<th>35000</th>
<th>36000</th>
<th>39000</th>
<th>40000</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS (kts)</td>
<td>TRQ</td>
<td>FF</td>
<td>TRQ</td>
<td>FF</td>
<td>TRQ</td>
<td>FF</td>
</tr>
<tr>
<td>4000</td>
<td>234</td>
<td>96.0</td>
<td>854</td>
<td>238</td>
<td>96.0</td>
<td>854</td>
</tr>
<tr>
<td>6000</td>
<td>234</td>
<td>96.0</td>
<td>820</td>
<td>238</td>
<td>96.0</td>
<td>820</td>
</tr>
<tr>
<td>8000</td>
<td>230</td>
<td>96.0</td>
<td>796</td>
<td>230</td>
<td>96.0</td>
<td>796</td>
</tr>
<tr>
<td>10000</td>
<td>228</td>
<td>96.0</td>
<td>778</td>
<td>228</td>
<td>96.0</td>
<td>778</td>
</tr>
<tr>
<td>12000</td>
<td>225</td>
<td>95.2</td>
<td>777</td>
<td>225</td>
<td>95.2</td>
<td>777</td>
</tr>
<tr>
<td>14000</td>
<td>221</td>
<td>94.8</td>
<td>732</td>
<td>221</td>
<td>94.8</td>
<td>732</td>
</tr>
<tr>
<td>16000</td>
<td>209</td>
<td>94.8</td>
<td>687</td>
<td>209</td>
<td>94.8</td>
<td>687</td>
</tr>
<tr>
<td>20000</td>
<td>198</td>
<td>93.6</td>
<td>609</td>
<td>198</td>
<td>93.6</td>
<td>609</td>
</tr>
<tr>
<td>25000</td>
<td>187</td>
<td>92.4</td>
<td>535</td>
<td>187</td>
<td>92.4</td>
<td>535</td>
</tr>
</tbody>
</table>

♦ contact ATC 10-20 miles before penetrating his airspace
♦ private msg (.msg CVAXXX) your friends or other CVA pilots to say hello. If no ATC online, maintain a listening watch on rw.avsim.net/cva for company traffic.

6. Descent
♦ determine top-of-descent (TOD) point
♦ prior to TOD point request descent from ATC (if available)
♦ if no online ATC, and Servinfo/SB TCAS indicate traffic in the area, make a general broadcast on UNICOM 122.800

“St John traffic – CanadianXXX 45 east planing visual app rwy 05”

The basic calculation for rate of descent is 3 times your altitude +10 ie: at FL200 (20 X 3 = 60) +10 = 70 start a 1500fpm descent at 70 miles from destination

♦ monitor descent rate to level at your initial approach fix (IAF) altitude approximately 20 miles from destination
♦ maximum speed in descent is 235kias NOTE: the aircraft is capable of higher IAS values – this is a CVA restriction
♦ comply with ATC/STAR routing restrictions as appropriate
♦ below FL180 ensure altimeters set to local station pressure
♦ below 10,000’ASL select passenger switches ON
♦ below 10,000’ASL select flare/approach lights ON
♦ ensure nav radios set for approach to be flown
♦ study approach & review missed approach procedures

7. Approach
♦ proper planning and preparation is the key to a successful (& uneventful) approach (See Chart: Approach Speeds - Page 5)
♦ you should be level at the initial approach fix (IAF) altitude and established clean 200kias (gear/flaps up) approximately 10 miles from the IAF
♦ in areas of moderate or above turbulence/chop reduce to a max of 180kias
♦ ATC may request you fly at a higher speed due traffic – do not exceed 235kias
♦ configure your aircraft to arrive at the IAF at 180kias

GEAR/FLAP SPEEDS
- Flaps 5° 148
- Flaps 15° 148
- Flaps 35° 130
- Gear Vle 172 (max extension speed)
- Gear Vlo 158 (max operating speed)

♦ upon activation the glideslope slow to 140kias
♦ extend gear and flaps 15 ie – the glideslope needle begins descending from its pegged position
♦ if short field landing set flaps 35
♦ upon passing final approach fix (FAF) reduce to appropriate final approach speed
♦ if flying a LOC - LOC(BC) – ILS if either localizer or glideslope needle reaches full deflection in either direction immediately carry out a missed approach
♦ avoid any ‘drastic’ maneuvers while in this full ‘dirty’ configuration

If using the autopilot to track the approach, disconnect autopilot when:
- airport environment in sight
- 500’ AGL
- carrying out a MAP (missed approach) procedure.
- smoothly flare and land your DHC-8 in a manner that would make your CVA instructor proud
- engage braking and reverse pitch as required
- exit the runway in a timely manner
- when clear of the runway
- squawk standby (SB and a/c systems)
- deselect strobes
- select anti collision red
- weather radar to STBY
- props to MIN
- engage ground throttle gate
- deselect approach/flare lights
- select taxi lights
Approach speeds

<table>
<thead>
<tr>
<th>Weight lbs</th>
<th>23000</th>
<th>36000</th>
<th>39000</th>
<th>43000</th>
<th>Icing Cond-s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_A(1.3N)</td>
<td>V_{GA}</td>
<td>V_A</td>
<td>V_{GA}</td>
<td>V_A</td>
</tr>
<tr>
<td>Flaps 0°</td>
<td>119</td>
<td>--</td>
<td>124</td>
<td>--</td>
<td>129</td>
</tr>
<tr>
<td>Flaps 5°</td>
<td>110</td>
<td>--</td>
<td>115</td>
<td>--</td>
<td>120</td>
</tr>
<tr>
<td>Flaps 10°</td>
<td>101</td>
<td>94</td>
<td>106</td>
<td>98</td>
<td>110</td>
</tr>
<tr>
<td>Flaps 15°</td>
<td>97</td>
<td>90</td>
<td>101</td>
<td>94</td>
<td>105</td>
</tr>
<tr>
<td>Flaps 35°</td>
<td>90</td>
<td>--</td>
<td>94</td>
<td>--</td>
<td>98</td>
</tr>
</tbody>
</table>

♦ Remember to readback any and all instructions from ATC
♦ complete **After Landing** Check
♦ taxi to the CVA assigned parking area (if available)
♦ at the gate engage parking brake & make note of time for filing PIREPS
 * engage external power
 * shut down
 * have a cold one (preferably a Keith’s IPA)
♦ go to CVA website, file your PIREP

Max climb power torque setting, 900 rpm

<table>
<thead>
<tr>
<th>IAS</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>OAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRQ</td>
<td>FF</td>
<td>TRQ</td>
<td>FF</td>
<td>TRQ</td>
<td>FF</td>
<td>TRQ</td>
</tr>
<tr>
<td>ALT</td>
<td>%</td>
<td>LB/HR</td>
<td>%</td>
<td>LB/HR</td>
<td>%</td>
<td>LB/HR</td>
</tr>
<tr>
<td>4000</td>
<td>96.0</td>
<td>912</td>
<td>96.0</td>
<td>870</td>
<td>96.0</td>
<td>869</td>
</tr>
<tr>
<td>8000</td>
<td>96.0</td>
<td>872</td>
<td>96.0</td>
<td>839</td>
<td>96.0</td>
<td>837</td>
</tr>
<tr>
<td>12000</td>
<td>96.0</td>
<td>841</td>
<td>96.0</td>
<td>816</td>
<td>96.0</td>
<td>814</td>
</tr>
<tr>
<td>14000</td>
<td>95.9</td>
<td>818</td>
<td>96.0</td>
<td>814</td>
<td>96.0</td>
<td>810</td>
</tr>
<tr>
<td>16000</td>
<td>95.0</td>
<td>770</td>
<td>91.5</td>
<td>775</td>
<td>92.5</td>
<td>780</td>
</tr>
<tr>
<td>18000</td>
<td>95.3</td>
<td>723</td>
<td>86.3</td>
<td>728</td>
<td>87.3</td>
<td>734</td>
</tr>
<tr>
<td>20000</td>
<td>80.3</td>
<td>557</td>
<td>81.4</td>
<td>684</td>
<td>82.5</td>
<td>690</td>
</tr>
<tr>
<td>22000</td>
<td>75.4</td>
<td>655</td>
<td>76.5</td>
<td>641</td>
<td>77.6</td>
<td>648</td>
</tr>
<tr>
<td>24000</td>
<td>70.8</td>
<td>695</td>
<td>71.9</td>
<td>602</td>
<td>73.1</td>
<td>608</td>
</tr>
<tr>
<td>25000</td>
<td>68.6</td>
<td>576</td>
<td>69.8</td>
<td>583</td>
<td>70.9</td>
<td>589</td>
</tr>
</tbody>
</table>

Takeoff speeds

<table>
<thead>
<tr>
<th>Weight lbs</th>
<th>33000</th>
<th>36000</th>
<th>39000</th>
<th>43000</th>
<th>Icing Cond-s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_A(1.3N)</td>
<td>V_{GA}</td>
<td>V_A</td>
<td>V_{GA}</td>
<td>V_A</td>
</tr>
<tr>
<td>Flaps 0°</td>
<td>119</td>
<td>--</td>
<td>124</td>
<td>--</td>
<td>129</td>
</tr>
<tr>
<td>Flaps 5°</td>
<td>110</td>
<td>--</td>
<td>115</td>
<td>--</td>
<td>120</td>
</tr>
<tr>
<td>Flaps 10°</td>
<td>101</td>
<td>94</td>
<td>106</td>
<td>98</td>
<td>110</td>
</tr>
<tr>
<td>Flaps 15°</td>
<td>97</td>
<td>90</td>
<td>101</td>
<td>94</td>
<td>105</td>
</tr>
<tr>
<td>Flaps 35°</td>
<td>90</td>
<td>--</td>
<td>94</td>
<td>--</td>
<td>98</td>
</tr>
</tbody>
</table>

[Approach speeds]
[Takeoff speeds]
Canadian Virtual Airlines
Dash8Q-300 NORMAL CHECKLISTS

INTENDED FOR THE FLIGHT SIMULATION ONLY. NOT TO BE USED FOR REAL WORLD FLYING.

FLIGHT DECK PREPARATION

EMERGENCY EQUIPMENT ON BOARD/CHECKED
BATTERIES & BATTERY MASTER . ON
MAIN BUS TIE TIED
EXTERNAL POWER AS REQ
DC POWER CONTROLS SET & CHECKED
DOCUMENTS AND FORMS ON BOARD
DE-ICE & ANTI-ICE SYSTEMS .. OFF
FIRE WARNING TESTED
FUEL VALVES OPEN
SMOKE WARNING TESTED
ELT ARMED
FLIGHT DATA RECORDER TESTED
IGNITION NORMAL
PRESSURIZATION SET & CHECKED
EXTERIOR LIGHTS AS REQ
AC POWER CONTROLS SET & CHECKED
AIR CONDITIONING CONTROLS . SET
NO SMOKING SIGN AS REQ
CAUTION & ADVISORY LIGHTS .. TESTED
EMERGENCY LIGHTS CHECKED & ARMED
ANTI SKID ON & TESTED
SYNCHROPHASE OFF
CLOCKS SET
GPWS OR EGPRS TESTED
PFC & PUSHER SHUT OFF SWITCH LIGHTS . NORMAL
STBY HORIZON CHECKED
ADVISORY DISPLAYS CHECKED
ENGINE INTAKE BYPASS DOORS . AS REQ
ECU SELECTOR TOP
ECU MODE SWITCHES ON
FUEL TRANSFER SWITCH OFF
AUX PUMP SWITCHES OFF
AUTOFEATHER OFF
ALTERNATE FEATHER SWITCHES . NORM
GEAR WARNING TESTED
HYDRAULIC SYSTEMS ON & CHECKED
ROLL SPOILER PRESSURE SWITCHES . NORMAL
CONTROL DISCONNECT HANDLES . IN
CONTROL LOCK ON
AHRS TESTED
EFIS SET
COCKPIT VOICE RECORDER* TESTED
TRANSPONDER STBY
FORWARD OUTFLOW VALVE NORMAL
ATIS RECEIVED

FLIGHT DECK PREPARATION COMPLETED

EMERGENCY LIGHTS ARMED
CLOCKS SET
STBY HORIZON CHECKED
ENGINE INTAKE BYPASS DOORS . AS REQUIRED
EFIS SET
ATIS RECEIVED

TRANSIT FLIGHT DECK PREPARATION COMPLETED

CREW AT STATIONS

(TRANSIT) FD PREPARATION COMPLETED
INSPECTION & SYSTEM ... COMPLETE & CHECKED
AIRCRAFT LOG & OPEN ITEMS .. CHECKED
PARK BRAKE AND PRESSURE SET & CHECKED
TRIM TABS 3 SET
ALTIMETERS X CHECKED
FUEL QUANTITY STATE QTY
EMERGENCY BRIEFING AS REQUIRED
RADIOS & EFIS SET
MOBILE PHONES OFF

CREW AT STATIONS COMPLETED

BEFORE ENGINE START

ENGINE BLEED SWITCHES OFF
IGNITION NORMAL OR MANUAL
ANTI COLLISION LIGHT RED
SEAT BELT SIGN ON
FUELING ON CAUTION LIGHT .. OUT
DOOR WARNING LIGHTS OUT
POWER LEVERS FLIGHT IDLE
CONDITION LEVERS FUEL OFF

BEFORE ENGINE START COMPLETED

AFTER ENGINE START

IGNITION NORMAL OR MANUAL
EXTERNAL POWER OFF
MAIN BUS TIE OFF
DE-ICE & ANTI-ICE SYSTEMS .. SET
AIR CONDITIONING AS REQUIRED
YAW DAMPER AS REQUIRED
FLIGHT INSTRUMENTS CHECKED
MANUAL PTU TEST PERFORMED
FLAPS AS REQUIRED
RUDDER TRAVEL FREE & CORRECT
WX RADAR STBY
AUTOFEATHER SELECTED
DE-ICE SYSTEM PRESSURE CHECKED

READY FOR PUSH-BACK
HYDRAULIC PRESSURE CHECKED
NOSE WHEEL STEERING ON

AFTER ENGINE START COMPLETED

TAXI CHECK

TAKE OFF BRIEFING AS REQUIRED
DEPARTURE AS REQUIRED
TRANSPONDER SET
FLAP POSITION & T/O SPEEDS . CHECKED
AUX PUMPS ON
WX RADAR TESTED
TAXI CHECK COMPLETED

BEFORE TAKE OFF CHECK
CABIN SECURED RECEIVED
FLIGHT DIRECTOR SET
CONDITION LEVERS SET
CONTROL LOCK & CONTROLS OFF & CORRECT
DE-ICE & ANTI-ICE SYSTEMS .. SET
BLEEDS MIN & OFF
CAUTION LIGHT PANEL BLACK
TRANSPONDER ALT
BEFORE TAKE OFF CHECK COMPLETED

CLIMB CHECK
ALTIMETERS X CHECKED
GEAR UP
FLAPS UP
AUX PUMPS OFF
AUTOFEATHER OFF
STBY HYDRAULIC PRESSURE SWITCHES .. NORMAL
DE-ICE & ANTI-ICE SYSTEMS .. SET
PRESSURIZATION CHECKED
IGNITION NORMAL OR MANUAL
BLEEDS & AIR CONDITIONING CONTROLS SET
CLIMB CHECK COMPLETED

DESCENT CHECK
FASTEN SEAT BELT SIGN ON
PRESSURIZATION SET & CHECKED
APPROACH BRIEFING AS REQUIRED
DESCENT CHECK COMPLETED

APPROACH CHECK
10 MINUTES TO LANDING" CALL GIVEN
ALTIMETERS X CHECKED
BLEED SELECTOR NORMAL
AUX PUMPS ON
STBY HYDRAULIC PRESSURE SWITCHES .. ON & CHECKED
APPROACH CHECK COMPLETED

FINAL CHECK
CABIN CHIME GIVEN
APPROACH CHECK COMPLETED
SYNCHROPHASE OFF
GEAR DOWN / 3 GREENS
FLAPS 15° OR 35°
CONDITION LEVERS MIN or 1050 or MAX
FINAL CHECK COMPLETED

AFTER LANDING CHECK
CONTROL LOCK ON
WX RADAR, TRANSPONDER STBY
MAIN BUS TIE TIED

DE-ICE & ANTI-ICE SYSTEMS .. OFF
LANDING LIGHTS OFF
IGNITION OFF
ANTI COLLISION LIGHT RED
AUX PUMPS OFF
FLAPS AS REQUIRED
AFTER LANDING CHECK COMPLETED

TRANSIT PARKING CHECK
TAXI LIGHT OFF
EXTERIOR LIGHTS AS REQUIRED
EMERGENCY LIGHTS OFF
EFIS AS REQUIRED
WX RADAR OFF
MOBILE PHONES AS REQUIRED
NOSE WHEEL STEERING.... OFF
PARK BRAKE AS REQUIRED
AIRCRAFT LOG SIGNED
EXTERNAL POWER AS REQUIRED
BATTERIES & BATTERY MASTER . AS REQUIRED
TRANSIT PARKING CHECK COMPLETED

PARKING CHECK
ELT AS REQUIRED
PRESSURIZATION DUMP
ENGINE INTAKE BYPASS DOORS . CLOSED
The TRANSIT PARKING CHECK, items...
PARKING CHECK COMPLETED

TRANSIT PARKING CHECK COMPLETED